CSSE 574 – Software Design
RHIT

Due 11:55 PM – Thurs, Nov 21, 2013
Note: I cannot accept delays on this due date because it is so close to when grades are due.
Take-home exam 2.

A. Instructions
Please take 4-5 hours for this exam – honor system. It’s open book. (And you can search for things on the Internet, etc., if you like! Indeed, some of the questions link to things out there, or you may benefit from additional info out there.)
I’m looking for maybe 3-4 pages typed, single spaced, in addition to the length of the questions and probably a bit more for the figures in the second part! Add your answer by typing under each question.

On each question, put some depth. I hope to see a representation of your own thinking, like applications of the ideas, beyond what’s in the book.

B. Questions - Short Answer (typically 2 - 5 sentences)
1. Ongoing Domain Modeling: Larman specifically recommends revisiting the domain model after you have done a couple iterations of development, refining the domain model with more precise descriptions of how it works. One of those enhancements is attention to changes over time, and other states and roles of the domain objects. For example, a regular “employee” can become a “manager,” and thereafter play a different role. (Like lose union status, and gain their own employees.) Or, the price of mayonnaise can change today in Larman’s NextGenPOS system. (But the customers who bought it yesterday paid the old price, not the now-current price.) Explain how you would handle this domain model design issue, of things changing over time, in a way that handles them systematically:
2. Getting SOLID with Pablo: In Jimmy Bogard’s section starting on p 61 (at http://lostechies.com/wp-content/uploads/2011/03/pablos_solid_ebook.pdf), we see an example of some “spider web” OrderProcessor code, and how to use the Dependency Inversion Principle to fix that. However, that starting code is certainly a perfect example of a Java class we all might have written originally, in response to a first set of customer requirements. And it takes time to go the extra mile, turning this code into something that is easier to maintain, as he does, with classes for general stuff and specific stuff. So, under what conditions would you go through that whole refactoring exercise described, if this were your original code, and why?
3. Usability: There are some traditionally difficult aspects to making a system have a highly usable interface. One of those is “cancelling” an operation that the user decides against, after telling the system to do it. Just stopping some operations will leave the system in an indeterminate or even unusable state. For example, suppose a system administrator discovers, after starting a batch update operation to their database, that they pointed to the wrong file of changes, to do the updating. Each update transaction may be atomic, but the whole operation surely is not. Describe a general design strategy you would use, to recover from this condition, and actually “cancel” incorrect operations generally:
4. Architectural Styles: Garlan and Shaw describe the “call and return” style of system, and also the “data abstraction” or OO style. The latter obviously has advantages in information hiding, etc. As Garlan and Shaw put it, there are important “invariants” gained with this style. The “implicit invocation” style gives further advantages, in allowing things like publisher-subscriber services to be built. And you gain an additional “invariant.” What would be the logical next step in information hiding, beyond the “implicit invocation” style – what are the “invariants” of this extension? Do such systems already exist? Explain your answer, whichever way you vote on that.
5. They’re watching! Closely related to building implicit invocation systems is the GoF Observer pattern. There are actually two different mechanisms for noticing when something has changed: (1) The thing that changes tells all the watchers, at the time of its change. And (2) The watchers have a way of spotting the change, and keep checking for that change till they see it. You would think method (1) was always the way to go, because it results in lower traffic. But that’s not always the case. When would you use method (2) instead?

6. What do an architect do? We all get paid to design and code software, but everyone wants to be an “architect.” Under what conditions, exactly, would the architect of a system abandon doing their own coding altogether, and just do design work as their technical contribution? Besides just “because of the size of the project”!
7. Case Studies: The value of case studies is in discovering what was behind the successes and failures of others' work, so you don't have to repeat their on-the-job learning. Bass has a very interesting Flight Simulation case study, at http://www.ece.ubc.ca/~matei/EECE417/BASS/ch08.html , and the following web pages. Give it a good look. In this, the software designers were tasked to put together a massive, real-time system which had to emulate reality precisely, in order for the system to be of value to the pilots it trained. Explain what the designers did on this huge project, so that it allowed code from a large number of separate contractors to integrate well into the whole system:

C. Questions - Problem Solving (include figures and explain them in a few sentences)
8. Deployment diagrams: Do a 1-page deployment diagram for at least some interesting part of your project, a figure which actually would be useful in showing how the the system relates to the real world. On the links between boxes, put the kinds of information you believe would be most useful, when using this figure to explain how the system works with the underlying hardware. In your explanation of what’s going on, add why your own information on those links was better than, or needed in addition to, what Larman shows on his links.
9. Availability: Pick an aspect of a system, whose inner workings you are familiar with, where availability is or was a concern. Describe this situation verbally, and put into a scenario like Bass uses. Draw an appropriate UML figure describing what's happening, and add a short explanation. Of Bass's general remedies – fault detection, etc., describe which one you would look at first, and why. Try to explain, in terms of Bass's Ch 5 discussion, what specific tactics would be worth trying!
10. Sorting out the Gang of Four: The structural patterns Adapter, Bridge, Façade, and Proxy, and the behavioral pattern Mediator all sound like synonyms for Larman’s “Indirection.” Indeed, they are similar enough that we didn’t even discuss all of them in class! Read about the ones that are new to you – the Wikipedia source for these is good enough. Then create a table in which these patterns are the columns, and the rows are situations in which you would pick a particular one of these over the others. So, the table should have five rows of data as well as five columns (in addition to identifying the meaning of each row and column). Your situations to not have to be complete (the only cases where you’d pick a certain pattern out of the whole lot), just good examples.

11. Factories, the only good idea? Factories (as a pattern) are often a good idea, removing clutter from a class. Consider all the things some complex class does. Creating things, or getting created itself, are just one kind of situation where the class can get overly messy. Nominate, as a new “pattern,” some other task besides making classes, something else which a lot of OO code does, and which we have well-known ways of dealing with. Define it as a pattern, filling in whatever parts of the definition are most relevant here. (Use the Wikipedia format for patterns at http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29#Documentation as a guide.)
D. Turn-in: Put your .doc file in the Moodle drop box provided by 11:55 PM, Thursday, November 21. (I may use Word’s change mode to comment and grade it.)

